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Intel Pentium FDIV Bug

Try 4195835 – 4195835 / 3145727 * 3145727. 

In 94’ Pentium, it doesn’t return 0, but 256.

Intel uses the SRT algorithm for floating point division. Five 

entries in the lookup table are missing. 

Cost: $400 - $500 million

Xudong Zhao’s Thesis on Word Level Model Checking



P53-Mdm2 and DNA Repair Circuit

Kurt W. Kohn, Molecular Biology of the Cell 1999



P53, DNA Repair, and Apoptosis

“The p53 pathway has been shown to mediate cellular stress responses; 

p53 can initiate DNA repair, cell-cycle arrest, senescence and, 

importantly, apoptosis. These responses have been implicated in an 

individual's ability to suppress tumor formation and to respond to many 

types of cancer therapy.” 

(A. Vazquez, E. Bond, A. Levine, G. Bond. The genetics of the p53 pathway, apoptosis and cancer 

therapy. Nat Rev Drug Discovery 2008 Dec;7(12):979-87. ) 

The protein p53 has been described as the guardian of the genome

referring to its role in preventing genome mutation. 

In 1993, p53 was voted molecule of the year by Science Magazine. 



The State Explosion Problem

 Symmetry Reduction

 Parametric Model Checking

 Partial Order Reduction

 Symbolic Model Checking

 Induction in Model Checking

 SAT based Bounded Model Checking

 Predicate Abstraction

 Counterexample Guided Abstraction Refinement

 Compositional Reasoning

. . .
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Wait a minute!

Isn’t Statistical Model Checking an oxymoron?

I thought so for the first 27 years of my quest. 

Much easier to simulate a complex biological system than 

to build the transition relation for it.

Moreover, we can bound the probability of error.



Jim Faeder, UPMC

begin molecule types

A(b,Y~U~P)

B(a)

end molecule types

begin reaction rules

A(b)+ B(a)<-> A(b!1).B(a!1)

A(Y~U) -> A(Y~P)

end reaction rules

Faeder JR, Blinov ML, Hlavacek WS Rule-Based Modeling of Biochemical Systems 

with BioNetGen.  In Methods in Molecular Biology: Systems Biology, (2009).
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The BioNetGen Language



Existing Approach: Manual Analysis

Many simulation  traces  need  to  be  carefully analyzed !



Model Checking Approach

BioLab 2.0

Automated  Analysis !



Bounded Linear Temporal Logic

 Bounded Linear Temporal Logic (BLTL): Extension of LTL 

with time bounds on temporal operators.

 Let σ = (s0, t0), (s1, t1), . . . be an execution of the model

– along states s0, s1, . . .

– the system stays in state si for time ti

 Example: Does the concentration of protein G stay above 

6000 for 2 time units and fall below 6000 before 20 time 

units?

 G2 (GProtein > 6000) Λ F20 (GProtein < 6000)



The semantics of the timed Until operator:

 “within time t, Φ2 will be true and Φ1 will hold until then ”

 σk: Execution trace starting at state k.

 σk Φ1 Ut Φ2 iff  there exists a number n such that

1) σk+n Φ2 

2) Σi<n tk+i ≤ t

3) for each 0 ≤ j < n, σk+j Φ1

 In particular: Ft Φ = true Ut Φ,   Gt Φ = ¬Ft ¬Φ

Semantics of BLTL



 Given a stochastic model      such as
– a Discrete or Continuous Markov Chain, or 

– the solution to a stochastic differential equation

 a Bounded Linear Temporal Logic property    and a 

probability threshold             .

 Does      satisfy     with probability at least   ?

 Numerical techniques compute the precise probability of 

satisfying    :
– Does NOT scale to large systems.

Probabilistic Model Checking



BioLab 2.0 

Model Checking Biochemical Stochastic models: M╞═ P≥θ(Φ) ?

Model M

BioNetGen Statistical Model Checker

BLTL 

formula Φ

BLTL to Monitor 

compiler

Formula 

monitor

M╞═ P≥θ (Φ)

Statistical 

Test
M╞═ P≥θ (Φ)



Statistical Model Checking

 Decides between two mutually exclusive 

hypotheses:

– Null Hypothesis

– Alternate Hypothesis

 Statistical tests can determine the true hypothesis:

– based on sampling the traces of system 

– answer may be wrong, but error probability is bounded.

 Statistical Hypothesis Testing            Model Checking!

Model Model Checking!



Motivation - Scalability

 State Space Exploration often infeasible for complex systems.

– May be relatively easy to simulate a system

 Our Goal: Provide probabilistic guarantees using fewer 

simulations

– How to generate each simulation run?

– How many simulation runs to generate?

 Applications: BioNetGen, Stateflow / Simulink

BioLab: A Statistical Model Checker for BioNetGen Models.

E. Clarke, C. Langmead, J. Faeder, L. Harris, A. Legay and 

S. Jha. (International Conference on Computational Methods in 

System Biology, 2008)



Motivation – Parallel Model Checking

• Some success with explicit state Model Checking

• More difficult to distribute Symbolic MC using BDDs.

• Learned Clauses in SAT solving are not easy to distribute.

• Multiple simulations can be easily parallelized.

• Next Generation Model Checking should exploit

• multiple cores

• commodity clusters



Existing Work

 [Younes and Simmons 02-06] use Wald’s SPRT

 SPRT: Sequential Probability Ratio Test

 [Hérault et al. 04] use Chernoff bound:

 Estimate the probability that M╞═ Φ

 [Sen et al. 04-05] use p-value:

 “Approximates” the probability that M╞═ P≥θ(Φ) is true

 [Grosu and Smolka 05] randomized LTL model checking:

 Finds counterexamples with high probability

 [Clarke et al. 09] Bayesian approach

 Both hypothesis testing and estimation

 Faster (fewer samples required)



 [Younes and Simmons 06] use Wald’s SPRT

– SPRT: Sequential Probability Ratio Test

 The SPRT decides between 

– the simple null hypothesis 

vs

– the simple alternate hypothesis 

 SPRT is asymptotically optimal (when        or       is true)

– Minimizes the expected number of samples

– Among all tests with equal or smaller error probability.

Existing Work: SPRT



Existing Work: SPRT

 MC chooses between two composite hypotheses

 Existing works use Wald’s SPRT for hypothesis

testing with an indifference region:

A. Wald A. Wald



Faster Statistical Model Checking!

 But MC chooses between two mutually exclusive 

composite hypotheses

Null Hypothesis

vs

Alternate Hypothesis

 We have developed a new statistical MC algorithm

– Performs Composite Hypothesis Testing

– Based on Bayes Theorem and the Bayes Factor.
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Bayesian Statistical Model Checking

 Bayesian Approach to Statistical Model Checking

– Faster than previous Statistical Model Checking.

 Uses prior knowledge about the model

 Revises prior knowledge in light of experimental data

Statistical Model Checking of Stochastic Systems
E. M. Clarke, S. K. Jha, A. Platzer, and P. Zuliani. 

CMU CS Technical Report 09-162.



Bayesian Statistical Model Checking 1

 Model Checking

 Suppose      satisfies     with (unknown) probability u.

– u is given by a random variable U with density g.

– g represents the prior belief that       satisfies    . 

 Generate independent and identically distributed (iid) 

sample traces.

 xi: the ith sample trace    satisfies    .

– xi = 1 iff 

– xi = 0 iff

 Then, xi will be a Bernoulli trial with density

f(xi|u) = uxi(1 − u)1-xi



 a sample of Bernoulli random variables.

 Bayes Theorem (Posterior Probability): 

 Ratio of Posterior Probabilities:

Bayes Factor

Bayesian Statistical Model Checking 2



 Bayes Factor: Measure of confidence in H0 vs H1

– provided by the data 

– weighted by the prior g.

 Bayes Factor > Threshold1: Accept Null Hypothesis H0.

 Bayes Factor < Threshold2: Reject  Null Hypothesis H0.

Definition: Bayes Factor B of sample X and hypotheses H0, H1

B

joint distribution of 

independent events

Bayesian Statistical Model Checking 3



Require: Property P≥θ(Φ), Threshold T > 1, Prior density g

n := 0 {number of traces drawn so far}

x := 0 {number of traces satisfying  so far}

repeat

σ := draw a sample trace of the system (iid)

n := n + 1

if  σ Φ then

x := x + 1

end if
B := BayesFactor(n, x)

until (B > T  v B < 1/T )

if (B > T ) then

return H0 accepted

else

return H1 accepted

end if

Bayesian Statistical Model Checking 4
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Bayesian Model Checking: Performance

Number of Samples Needed vs. Threshold θ in the Probability Formula

Actual Probability of the Formula being True = 0.58 Actual Probability of the Formula being True = 0.93



Bayesian Model Checking: Priors

Number of Samples Needed vs. Different Choices of Prior Probability Distribution



Future Work: Cost-Based Bayesian MC

 Model Checking query: M ╞═ P≥θ(Φ), for 0 < θ < 1. 

 C(N): Cost of generating the Nth sample.

 R(u,θ): Cost of incorrectly deciding the MC query

– u is the (unknown) probability that M satisfies Φ

– θ is the probability threshold in the specification

 Then, the key problem is to compute E[R(u,θ) | XN]

– expected cost of a wrong decision after observing N samples 

XN= (x1, . . . , xN)

 Stopping Criterion:

– Stop when cost exceeds the reduction in the expected cost of 

making a wrong decision.

C(N+1) ≥ E[R(u,θ) | XN+1] - E[R(u,θ) | XN] 



BioLab (upcoming)

Model Checking Biochemical Stochastic models: M╞═ P≥θ(Φ) ?

Model M

BioNetGen Bayesian Model Checker

BLTL 

formula Φ

BLTL to Monitor 

compiler

Formula 

monitor

M╞═ P≥θ (Φ)

Cost based 

Bayesian Test
M╞═ P≥θ (Φ)



Conclusions

 Some evidence that Statistical MC scales to large systems

– BioNetGen Models

– Matlab Simulink Models

 We have developed a Bayesian MC algorithm which 

– is faster than state-of-the-art approaches,

– can use prior knowledge about the system.

 Initial experiments on BioNetGen / Matlab models are 

encouraging.

 Plan:

– More complex BioNetGen and Stateflow / Simulink models

– In particular, BioNetGen Models of Pancreatic Cancer from TGen



The End

Questions?


